KKP Division of Polymer and Materials Science: Webinar on Functional Materials

By: Fr. Antonio M. Basilio, S.J., Ph.D.
KKP Auditor & Webinar Co-Chair

A quotation from the fifth Chapter of the book, Frontiers of Material Research, indicate the importance of materials science and national development. In page 221 of the book, it is stated, and I quote…

“There is now a clear understanding, particularly among countries in the Organization for Economic Cooperation and Development[1] (OECD) and the so-called developing countries, that science and technology (S&T) buttressed by innovation (STI) are essential pillars of economic growth, and that advanced materials are a critical one – of these pillars. Sanford L. Moskowitz, in his book Advanced Materials Innovation, Managing Global Technology in the 21st Century,[2] estimates that over three-quarters of all economic growth by 2030 to 2050 will be attributable to the development and application of advanced materials and that investments in materials research (MR) are tied directly to national competitiveness and economic prosperity. He also argues that never has the potential of materials research seemed so important and crucial to human existence as it does for the 21st century.”

As that passage collaborates, we can already see the importance of the researches and knowledge presented to us in this morning’s webinar. Materials research is a critical underpinning to economic growth as well as national competitiveness, wealth and trade, health and well-being, and national defense.

Dr. Jan-Michael Y. Carrillo, whose research on multi scale molecular dynamic simulations of soft matter and polymers allow us to imagine possible research applications based on the behavior of the lipids and other soft matter in various circumstances, like the location of domains in curvature regions. Also how formation of double layers (through simulations) can aid in the design of drug-delivery systems. He showed how the simulation can aid and complement the performance of difficult, time-consuming, and expensive experiments. He likewise introduced us to possibilities of collaboration with Oak Ridge National Laboratory.

Dr. Ted Limpoco’s research on Atomic Force Microscopy allows us to characterize surface structures and polymers. He demonstrated how nano- and micro-structures, processing, interfacial properties would determine properties of various materials. He showed us the possibility of utilizing AFM in characterizing mechanical, thermal, electrical and magnetic properties of systems. The surface characterization can be extended to nanometer resolutions.

Dr. Ted Limpoco also showed examples how AFM was be utilized to probe interfacial conditions that may be connected to macroscopic performance issues of systems.

Dr. Seong-Cheol Kim’s presentation on anionic polyelectrolytes opens possibilities for its biomedical applications. The toxicity of PHMG or polyhexaguanidine disinfectant was dramatically reduced using polyelectrolyte complexation techniques. Dr. Kim mentioned that they used economical and biocompatible polymers like kappa-Carrageenan, biopolymers very much accessible to us. He also showed how copolymerization demonstrated anti-fouling effect and enhanced anti-microbial properties.

Dr. Jordan Madrid’s presentation on the use of radiation processing technologies, such as use of gamma rays, accelerated electrons and X-rays — allows us new possibilities in the development and production of functional materials. These provide opportunities as well for more green processes. Examples of applications of this process into development of polymers with useful properties were also given, many of them have patent-pending applications, and potential to improve our local materials. Opportunities for collaboration are also presented.

Moskowitz, the author I quoted at the beginning of my short closing remarks, indicate the key link is to develop materials research invention and innovation into a robust market technology. Not only do we need to work on innovative ideas but that these ideas may be translated into commercialization applications and technology-transfers.

I suppose this is an area we can look at further. For instance, we can take a look at how the various studies can be applied to packaging studies, biopolymer synthesis, renewable energy to improve performance of various systems, improve likewise their cell compatibility. Radiation technology can be utilized for sustainable, more green production of functional materials, that can also lead us to improvement of properties of local materials. We can also help promote these technologies, and help clarify fears typically associated with the technique.

We thank everyone for the participation and interest. May the talk of our researchers today lead us to imagining works that will benefit our country. Until next time, a blessed day to all of us.


[1] An intergovernmental economic organization with 36 member countries, founded in 1961 to stimulate economic progress and world trade.

[2] See S.L. Moskowitz, 2016, Advanced Materials Innovation: Managing Global Technology in the 21st Century, Wiley, https://www.wiley.com.

Posted in News.